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Abstract

Wood bioenergy has become an important renewable energy source in the EU
and UK, driven largely by generous subsidies. Yet burning wood emits more
CO2 than coal at the smokestack. Any climate benefit therefore depends on
how subsidies affect landowners’ decisions and whether the resulting change
in forest carbon stocks offsets these emissions. I study the effects of these
subsidies on landowners in the US South—the world’s main wood bioenergy
exporter—and find the opposite: the forest carbon sink weakens, reflecting
reduced sequestration, making the policy counterproductive both at the point
of emissions and in the forest. To identify these effects, I develop a dynamic
structural model combining land-use and harvesting decisions under local
oligopsony power to capture the trade-off landowners face between harvesting,
costly replanting, and alternative land uses. The model is estimated on a
panel of 5.1 million land plots built from remote-sensing data on land use,
harvesting, and biomass. Results show that policy-induced harvesting is not
offset by increases in planting, leading to net deforestation and declining forest
carbon stocks. The impact is substantial: in 2024, the estimated reduction
in annual carbon sequestration equals 1.4 percent of UK emissions, and by
2050, the social cost of lost forest carbon is projected to reach $53 billion. The
analysis suggests that location-based sourcing restrictions could reverse this
negative impact and deliver social benefits instead.
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1. Introduction

Since the EU’s 2009 Renewable Energy Directive (RED-I), subsidies have made wood bioenergy
a dominant feature of renewable energy policy in the EU and UK. By 2020, the original end
date for RED-I, wood accounted for roughly 30% of the EU’s renewable energy consumption
and about 8% of UK electricity generation (European Commission, 2024; Department for
Energy Security and Net Zero, 2025).1 Yet subsidizing wood remains controversial because
burning wood emits about 20 percent more CO2 than coal per unit of energy. Thus, the net
effect on atmospheric carbon depends on how landowners respond to subsidy driven price
changes and how those responses affect forest carbon stocks.

Landowners can, in principle, supply bioenergy from existing waste-wood streams, which
would benefit the climate. In practice, however, even when firms report sourcing waste wood,
these materials may have otherwise supplied other buyers, causing them to substitute toward
new harvests. As a result, feedstock data alone cannot reveal whether increased bioenergy
demand sources from waste streams or induces new harvests. What matters is the aggregate
market-level response—how the sector adjusts harvesting, replanting, and land use when
subsidies raise expected prices. Measuring that adjustment is key to identifying the marginal
source of wood bioenergy and how bioenergy demand alters forest carbon.

This paper provides empirical evidence on these aggregate market-level adjustments. It
estimates how landowner harvesting, replanting, and land use decisions respond to bioenergy
subsidies to identify where the marginal unit of wood is supplied from and how these responses
affect the forest carbon stock over time. Together, these results provide a basis for evaluating
whether wood bioenergy can truly be considered renewable.

To study these dynamics, I focus on the US South, which became the world’s main export
region for wood bioenergy following RED-I. I construct a novel, high-resolution spatial dataset
on annual land use, harvesting, forest biomass, and market conditions across the region from
2000 to 2023. The dataset integrates multiple remote-sensing products with local measures of
prices, market structure, site accessibility, and agricultural suitability, providing the richest
data yet used to study forest-sector responses. With over one billion 30-meter grid cells as
the unit of observation, these data capture both the ecological and economic conditions under
which landowners operate at a continental scale.

The aggregate market response I study arises from the behavior of individual landowners.
Subsidies for wood bioenergy prompted the entry of pellet mills as new wood buyers. Impor-

1UK electricity data are from DUKES Table 6.2 and refer to plant biomass, which is predominantly
wood-based.
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tantly, because logs are bulky and expensive to transport, landowners sell to a limited number
of nearby mills, creating localized oligopsony markets where local competition shapes prices.
Pellet mill entry increased local competition, raising prices paid to landowners and incentives
to harvest. After harvesting, landowners face a fixed cost to either re-establish forests or
convert land to another use, and the relative profitability of these options varies across space.
This leads to imperfect replanting, as some landowners choose to exit forestry rather than
reinvest. Higher prices also encourage more replanting and, in some cases, afforestation, with
both responses shaped by planting costs and the value of alternative land uses.

Given the fixed costs of switching land use and the slow biological growth of trees,
landowners are forward-looking: they form expectations about future prices and market
conditions when deciding whether to harvest, plant trees, or convert land. I formalize their
decision process in a single-agent dynamic discrete choice model that unifies harvest-timing
and land-use decisions. Critically, the model extends the literature on dynamic land use
by incorporating locally concentrated oligopsony markets. Observable prices—driven by
international demand for wood products and regional transport costs—lack the spatial
resolution needed to capture the effective prices landowners receive, which depend on local
oligopsony power and markdowns. Ignoring this would systematically mismeasure prices
and bias estimates of how landowners respond. The model links bioenergy-driven mill entry
induced by RED-I to changes in local markdowns and expectations, identifying the true
behavioral responses that determine forest carbon outcomes.

The model is estimated by Nested Pseudo Likelihood (Aguirregabiria and Mira, 2002) on
a 5-million-plot sample drawn from an evenly spaced grid spanning the entire study region
during the post-policy period. All estimates have the expected signs and are statistically
significant: harvesting costs rise with slope, insect risk increases forest upkeep costs, outside-
option values are higher near cities and productive farmland, and greater mill competition
substantially raises expected returns to harvesting. The model closely replicates observed land-
use transitions and harvest patterns, providing a strong basis for counterfactual simulations.

Using the estimated model, I simulate harvest behavior, biomass accumulation, and carbon
flux from the start of RED-I through 2050 under observed conditions with bioenergy mills.
I then construct a counterfactual that removes wood bioenergy mills, which alters local
markdowns and expected returns to harvesting and replanting. By comparing these two
simulations, I obtain an estimate of the induced harvests and impact on forest carbon flux
due to RED-I subsidies.

The simulations show that nearly all of the wood required to match observed US bioenergy
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production is supplied through increased harvesting rather than waste wood.2 This contrasts
with feedstock data from U.S. Energy Information Administration (2025), which indicate
that only 10–20 percent of bioenergy production comes directly from harvested logs. The
discrepancy reflects both measurement issues in the feedstock data and feedstock substitution
across mills.3 Feedstock substitution is consistent with US Forest Service (USFS) data
showing that the primary form of waste wood—sawdust—was already over 99 percent utilized
prior to RED-I (Johnson et al., 2011). These results indicate that most of the wood supplying
subsidy-induced demand is sourced from new harvests. Accordingly, realizing climate benefits
depends on whether and when the ensuing carbon debt from these additional harvests is
repaid through forest regrowth.

The estimated increase in harvesting translates into a measurable weakening of the forest
carbon sink. While forests in both scenarios continue to absorb carbon, the model estimates
imply substantially slower biomass accumulation due to bioenergy subsidies. This implies
that wood bioenergy from the US South is more carbon-intensive than coal. In 2024, annual
carbon sequestration is estimated to be roughly 5 million metric tonnes lower than it would
have been without subsidies, equivalent to 1.4% of UK emissions. Through 2050, this results
in a present value social cost of lost forest carbon of roughly $53 billion (2020 USD) valued
using the EPA’s social cost of carbon estimates (U.S. Environmental Protection Agency,
2023a).4 The carbon debt from induced harvests is not repaid within any relevant horizon as
slower sequestration persists for over 250 years. Even with carbon capture and storage at the
point of combustion, atmospheric CO2 would continue to rise due to the loss of forest carbon
stock.

These findings challenge the prevailing view of wood bioenergy as carbon neutral. Prior
studies on wood bioenergy have found simulated increases in carbon stocks or near-term
carbon neutrality (Abt et al., 2014; Aguilar et al., 2022). However, Abt et al. (2014) and
Duden et al. (2023) use partial-equilibrium simulations that assume perfect replanting, while
Aguilar et al. (2022) employs a reduced-form design limited to forested plots and does not
capture land-use changes. In contrast, my findings align with the carbon-accounting concerns
first raised by Searchinger et al. (2009) and later emphasized in Searchinger et al. (2018,
2022), who argue that wood bioenergy’s climate benefits depend on complete regrowth

2Other empirical evidence supports this finding: Williams and Xi (2021) document higher harvest rates
in bioenergy sourcing regions using spatial data on harvested area, while Parajuli et al. (2024) report a
persistent though statistically insignificant increase in harvesting using aggregated data.

3Specifically, the data categorize minimally processed wood handled on-site as waste rather than as newly
harvested material.

4The value used in this paper relies on the path of social costs implied by the 2% near-term Ramsey
discount rate which begins at $190 per tonne of CO2 and increases to $310 in 2050. All values are discounted
to 2020.
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and the absence of land-use displacement. This paper provides the first empirical test of
those mechanisms, combining observed land-use and biomass transitions within a dynamic
structural framework. Imperfect replanting—documented directly in the data—leads to
land-use switching after harvest that is not offset by additional forest establishment. This
mechanism leads the model to predict a cumulative loss of roughly 1,500 km2 of forest by
2050, comparable to the size of metropolitan Orlando. This loss of forest area underlies the
persistent reduction in carbon sequestration.

These aggregate effects mask important spatial heterogeneity that suggests targeted policy
responses. I decompose the results by forest type and land value, revealing that the declines
in forest area and forest carbon are not uniform. Most carbon losses occur in hardwood
forests and areas with high agricultural or urban development value, while softwood forests in
lower-value regions exhibit increased forest carbon. Accordingly, existing policy frameworks
such as the EU Deforestation Regulation (EUDR) and the UK’s forthcoming Forest Risk
Commodity Regulation could integrate spatial sourcing criteria to favor low-agricultural-value
softwood regions and restrict sourcing from areas with high development pressure or hardwood
dominance. Embedding such spatial targeting within deforestation laws would help ensure
that renewable energy policies deliver genuine climate benefits.

Related Literature This paper relates to several strands in the literature. Most directly,
it builds on models of forestry and harvest behavior in the tradition of Faustmann (1849),
extended to stochastic settings by Provencher (1995a,b), who formulate harvest timing as a
dynamic discrete choice model in the spirit of Rust (1987). Later work extends this framework
to interdependent forest products (Wu et al., 2022), to climate adaptation and species-rotation
dynamics under changing environmental and carbon price conditions (Guo and Costello,
2013; Hashida and Lewis, 2019), and to spatially heterogeneous harvesting costs (Rust and
Paarsch, 2020). My paper is closely related to Rust and Paarsch (2020), who model harvest
timing as a function of detailed spatial cost heterogeneity. I extend this approach to an
estimable framework at a continental scale that incorporates spatially heterogeneous costs
and unifies the extensive (land use) and intensive (harvest timing) margins within a single
dynamic discrete choice model that incorporates market power, imperfect replanting, and
landowner amenity preferences following Hartman (1976).

Methodologically, I build on a growing literature estimating discrete choice models to study
land use and environmental policy (Scott, 2014; Souza-Rodrigues, 2019; Sant’Anna, 2024;
Araujo et al., 2025; Hsiao, 2025). These papers typically examine how biofuel subsidies or
agricultural policies affect land use and deforestation-related emissions by modeling long-run
price changes and allowing landowners to convert forest to nonforest land subject to switching
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costs. Souza-Rodrigues (2019) provides the static foundation for this literature which is
extended to dynamic settings in subsequent work by Sant’Anna (2024) and Araujo et al.
(2025). I contribute by modeling the inverse problem—wood bioenergy subsidies that raise
the value of forested land and cause transitions into forestry—and by introducing a novel
interaction between buyer concentration and landowner behavior by embedding markdowns
directly in the discrete choice framework.

This paper also relates to the literature on timber markets and price formation (Baldwin
et al., 1997; Athey and Levin, 2001; Haile, 2001; Li and Perrigne, 2003; Athey et al., 2011;
Préget and Waelbroeck, 2012; Kuehn, 2019), which shows how competition, information, and
market structure affect prices. While I do not model auctions explicitly, I build on the insight
from this literature that local buyer concentration affects prices paid to sellers. I incorporate
buyer concentration through reduced-form markdowns in the landowner’s decision problem,
linking local mill competition to harvest and replanting decisions.

The remainder of the paper proceeds as follows. Section 2 provides background on wood
bioenergy policies and an overview of the forestry industry in the US South. Section 3
introduces an expository carbon accounting framework that highlights the conditions required
for bioenergy to deliver climate benefits. Section 4 describes the data and presents descriptive
evidence that motivates the model and counterfactual design. Section 5 develops the dynamic
model, and Section 6 discusses its estimation. Section 7 presents the counterfactual simulations
and results. Section 8 concludes.

2. Background

In this section, I provide background on the policy and industry context that motivate the
analysis, focusing first on the evolution of European wood-bioenergy policy and then on the
structure of the US forestry sector.

Policy Setting The European Union’s Renewable Energy Directive (RED-I), enacted in
2009, was the first major policy to subsidize wood bioenergy as part of its decarbonization
agenda. The inclusion of wood as a renewable energy source has been controversial because
combustion emits more greenhouse gases at the smokestack than coal or natural gas.5 Under
RED-I, member states were required to submit National Renewable Action Plans (NRAPs)
detailing how they would meet their 2020 renewable-energy targets. Most had implemented
incentives for renewable energy by 2011, with several starting earlier.

5Wood pellets in particular produce roughly 1.2 times the amount of CO2 per joule than coal, and more
than 2 times that of natural gas.
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While wood bioenergy was a significant energy source prior to RED-I, mainly in residential
heating, its use expanded substantially following the directive’s implementation. After RED-I,
member states began to subsidize wood bioenergy both in residential heating and large-scale
electricity generating facilities. Member states, such as Italy, France, and Germany, subsidized
small-scale biomass stoves and boilers; while others, such as the Netherlands, Denmark, and
the UK, subsidized co-firing biomass in coal facilities. In both cases, wood pellets are the
preferred fuel due to their low moisture content, uniform size, increased efficiency, and lowered
trade costs for bulk international shipping. The scale of biomass energy subsidies drove the
increase in supply from this energy source. Annual subsidies for all forms of biomass in
the EU have ranged from $9-$20 billion, similar in scale to subsidies for wind, and about
two-thirds of subsidies for solar energy (European Commission, 2021).6

National spending on wood bioenergy is difficult to isolate precisely as subsidies target
solid biomass for heat or electricity, and agricultural and wood-based biomass fuels are largely
fungible in energy production. For solid biomass used in electricity generation, predominantly
wood pellets, subsidies have ranged from roughly $5–$5.5 billion across the EU (Smith et al.,
2022). Annual UK subsidies for co-firing wood have totaled $1.0-$2.2 billion, about half
the level of wind subsidies and twice that of solar (Smith et al., 2022; UK National Audit
Office, 2025). These programs drove the conversion of coal plants to biomass and enabled
the full coal phase-out by 2024. These subsidies are in addition to the exemptions from
carbon taxation on smokestack emissions from burning biomass, which are substantial given
the fuel’s low efficiency. For example, UK wood-pellet combustion has accounted for 2–4
percent of national greenhouse gas emissions since RED-I. In 2020, exemptions from the EU
Emissions Trading System (ETS) equated to approximately $1 billion in the UK, while across
the EU the corresponding exemption equated to nearly $11 billion.7

This policy support caused demand for wood bioenergy to exceed domestic supply in
many member states, leading to large imports of wood pellets. This is especially true in
the UK, which became Europe’s largest importer of wood bioenergy.8 Figure 1 shows how
this excess demand was met almost entirely by exports from the US South9. Prior to the

6The EU Emissions Trading System also exempts biomass fuels from carbon taxation which may have
increased usage in some industries; but, due to low carbon prices in the 2005-2009 period, the impact was
much more limited than the direct supports put in place by member countries after RED-I was passed.

7Authors calculations. Pellet usage in the EU and UK come from USDA Wood Pellet Annual reports,
which are converted to CO2 emissions using the official EU smokestack conversion factor. These are then
valued using the average annual ETS auction value in 2024.

8In 2020, the UK accounted for 65% of net imports of wood pellets in the EU prior to leaving. UK wood
pellets are primarily sourced from the United States, which provided 77% of imports (US Import & Export
Merchandise Trade Statistics, Port-level HS6 data, 2024, author’s calculations).

9This region supplied nearly 99% of all US pellet exports after RED-I (US Import & Export Merchandise
Trade Statistics, Port-level HS6 data, 2024, author’s calculations)
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policy, US wood pellet exports were effectively zero, and expanded sharply after 2011 as
NRAPs were implemented, demonstrating how European policy directly restructured US
wood markets. The US South thus provides an ideal setting to study the effects of RED-I
subsidies on landowner behavior, as the effect of the subsidies can be identified from the
entry of new export-oriented wood bioenergy mills.

Figure 1: Wood Bioenergy Trade

Source: UK import data is from Eurostat HS4 trade data (4401: Fuel Wood), while US export data
source is from US Import & Export Merchandise Trade Statistics, Port-level HS6 data (440131: Wood
Pellets). Exports from southern ports calculated by author.

By 2020, RED-I’s EU-wide 20% target was achieved. However, this was largely due to
wood burning: 30% of EU renewable energy consumption in 2020 was from wood-based
biomass products (European Commission, 2024). In the UK, which predominantly subsidized
wood bioenergy in electricity generation, 8.3% of all electricity generated was directly from
wood pellets in 2020 (Department for Energy Security and Net Zero, 2025).10.

Although RED-I’s main policy objectives were achieved by 2020, demand for wood
bioenergy is expected to keep growing. Revisions to RED-I in 2018 and 2023 raised the EU’s
renewable energy targets for 2030 to 32 percent and 42.5 percent, respectively, reinforcing
continued reliance on biomass.11 Since leaving the EU, the UK has followed a similar path

10While the official data is for electricity generation from all forms of plant biomass, the report notes that
this category is predominantly wood pellets.

11Recent revisions to RED also introduced stricter sustainability criteria, prompting several countries to
enact national limits on biomass subsidies (e.g. Netherlands, Slovakia, Portugal), reflecting growing climate
compatibility concerns of biomass power.
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under the Climate Change Act, which retained most domestic renewable energy supports.12

Together, these policies continue to encourage wood bioenergy use, and are projected to
require roughly twice the current annual wood harvest (Searchinger et al., 2018; European
Commission, Joint Research Centre, 2024).

Industry Background The structure of the forestry market guides my modeling decisions
and provides the means by which landowner choices respond to changes in bioenergy policy.
Over 90 percent of land in the US South is privately owned, with forests accounting for
about half of the total land area. Forest cover has declined steadily since the early 1990s,
largely driven by urban expansion (Wear and Greis, 2013). Governments own roughly 14
percent of forested land, which are often restricted to remain forested, but are not protected
from harvesting and are actively managed for commercial value.13 Among private owners,
individuals and families are the largest ownership group, followed by institutional investors
and finally upstream mills.14

Forests consist primarily of fast-growing softwood plantations and slower-growing hardwood
forests. Wood from each type is distinct and requires different mill technologies for processing.
A single tree yields multiple products: high-grade sawtimber, lower-grade pulpwood, and
residues with little or no market value.15 Sawtimber is sold to sawmills, while pulpwood
supplies fiber-consuming mills. These mills can also substitute pulpwood with sawdust, a
byproduct of sawmills. Residues are considered waste product that is left on site to decay or
is removed via burning or disposal.16

Timber is sold mainly through first-price sealed-bid auctions in which consulting foresters
represent landowners and buyers pay for harvest and transport costs.17. Mills purchase wood

12A 2025 decision introduced a cap to the support for wood pellets, halving subsidies by 2027 and restricting
future eligibility to plants demonstrating a credible pathway to carbon capture and storage by 2031.

13Only a small share of public forests are legally protected from harvest. These areas include national
parks, wilderness areas, and certain state conservation lands.

14Families control approximately 55 percent of forest land although ownership is highly skewed: although
59 percent of family owners hold fewer than 10 acres, over 60 percent of family-owned acreage belongs to
owners with more than 100 acres (Caputo and Butler, 2025). Mills own approximately 4% and the remainder
of forest land is owned by institutional investors (Sass et al., 2021). Forest ownership structure has changed
over time, most notably by the exit of mills as landowners which controlled approximately 20% of land in the
1990’s (Butler and Wear, 2013).

15Sawtimber is the portion of the tree trunk that exceeds 12 inches in diameter. For softwood forests, it
takes approximately 25-30 years for the majority of the trees volume to be sawtimber; for hardwood forests it
takes 50-60 years. Pulpwood refers to the 4–12-inch portion of the trunk. Residues make up the remainder of
the tree (i.e. the branches, leaves).

16Residues may have some value to landowners by contributing to nutrient cycling, soil carbon maintenance,
and erosion control, all of which may increase future forest productivity.

17Recent surveys report that over 90 percent of private timber sales utilize sealed-bid auctions (Grove
et al., 2019). The winning bidder pays the landowner in full, net of forester fees.
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locally, as raw logs are bulky and costly to ship long distances relative to their value. The
majority of shipments are via truck within an average distance of 50 miles for softwoods, and
up to 75 miles for hardwoods (Gibeault and Coutu, 2015).18 These geographic limits mean
that any given landowner faces only a small number of potential buyers.

Following a clearcut harvest, most forests in the US South are artificially replanted, which
requires fixed-cost investments in site preparation and seedling planting.19 If a landowner
instead chooses to convert their land to non-forest uses, they incur additional stump removal
and land clearing costs. Harvesting typically occurs in the year of sale, with replanting or
conversion decisions taking place the following year.

Sawmills and fiber-consuming mills process harvested wood into end-use products. Sawmills
are technologically specialized and process only one wood type, as production equipment and
sawing patterns are not interchangeable across species. Fiber-consuming mills include pulp,
plywood, and pellet mills. Pulp mills operate at large scale with rigid feedstock requirements,
typically processing only one wood type.20 Plywood and pellet mills are smaller, more flexible,
and can substitute between forest types or use residues from logging or sawdust waste from
sawmills.

In response to RED-I, pellet mills entered wood markets in the US South to supply the
growing European demand for bioenergy. Figure 2, panel (a), shows that the capacity of
export-oriented pellet mills was effectively zero prior to RED-I but increased sharply thereafter,
exceeding 14 million metric tonnes by 2023.21 As shown in panel (b), pellet mills now account
for a significant share of fiber-consuming mill capacity across the region, representing about 15
percent of total regional wood-fiber processing capacity with considerable spatial heterogeneity.
As mills compete locally for feedstock, these state-level aggregates understate their impact
on affected landowners. Importantly, pellet mills represent new entrants into local wood
markets, as they are not owned by incumbent firms.

18Hardwood mills have a larger sourcing radii due to more species-specific mill technology and a greater
spatial dispersion of harvest-ready trees.

19Natural regeneration, which requires smaller fixed costs and yields slower growth remain more common
among small family owners and hardwood forests but is less prevalent overall (Schelhas et al., 2021).

20Softwood pulp fibers are primarily used in packaging and cardboard, while hardwood pulp is used for
tissue and fine paper products. A small number of pulp mills can substitute between wood types based on
market conditions, but due to output differences this practice is not common.

21The initial increase in 2008 reflects the opening of the Cottondale pellet plant in Florida, which began
operation in anticipation of RED-I to supply European utilities.
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Figure 2: Growth of Pellet Mills

Source: Forisk Mill Database & Southern Environmental Law Center’s Pellet Mill Database.

3. Carbon Accounting Framework

To clarify how wood bioenergy policies affect atmospheric carbon, I introduce a simple
accounting identity-in the spirit of Searchinger et al. (2009)-linking emissions, land use, and
fuel displacement. Let At denote atmospheric CO2 in period t, and let total wood bioenergy
use be Et = Ht +Rt, where Ht is energy from newly harvested wood and Rt is from residues.22

The policy-induced change in atmospheric carbon is:

∆At = eb Et︸ ︷︷ ︸
Smokestack Emissions

− ∆Lt︸ ︷︷ ︸
Land Sink

− ekEt︸ ︷︷ ︸
Displaced Emissions of Marginal Fuel k

+ ∆Rt︸ ︷︷ ︸
Residue Emissions

(1)

where eb and ek are emission factors (tons CO2 per unit energy) for biomass and the displaced
fossil fuel k. The change in forest carbon sequestration between the policy and baseline worlds
is captured via ∆Lt, which reflects adjustments in harvesting, land conversion, replanting, and
forest growth. Finally, ∆Rt represents the change in emissions from residue decomposition or
disposal resulting from the policy. To illustrate the carbon implications for a given biomass
policy, I consider two edge cases for the source of Et: residues and new harvests.

22This includes harvest residues left on site (branches, leaves) and by-products from wood-processing mills.
The framework assumes total energy demand is fixed, such that subsidies reallocate energy inputs rather than
expand overall consumption. It abstracts from upstream emissions across fuels, assuming these are similar
on average. Recent evidence suggests upstream methane leakage from natural gas may be large, narrowing
the gap between coal and gas emissions (Howarth, 2024). Upstream emissions per petajoule are higher for
wood than for coal (Tran et al., 2023); since coal remains more carbon-intensive than gas, omitting upstream
emissions does not alter the main intuition here. Finally, the framework abstracts from differences in forest
disturbance risk across harvest frequencies, for which causal evidence remains limited.
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100% Residue Case (Et = Rt). If all bioenergy is sourced from residues, smokestack
emissions substitute for decomposition emissions, such that ebEt = −∆Rt.23 This simplifies
the above identity to: ∆At = −∆Lt − ekEt. With no new harvesting, the land sink continues
to grow; however, landowners may still respond by planting new trees, implying ∆Lt ≥ 0.
Because displaced fossil-fuel emissions are non-negative (ekEt ≥ 0), residue-based bioenergy
is at worst carbon-neutral and can reduce atmospheric CO2 if forest growth or fossil-fuel
displacement effects are positive.

100% New Harvest Case (Et = Ht). When all bioenergy is sourced from new harvests,
carbon neutrality is harder to achieve as eb > ek because wood emits more CO2 per unit
of energy than fossil fuels, and harvests generate additional residues (∆Rt > 0). Carbon
neutrality therefore requires the land sink to increase by more than the combined increase in
smokestack and residue emissions:

∆Lt > (eb − ek)Et + ∆Rt.

As smokestack emissions occur immediately while forest regrowth is gradual, harvested
bioenergy creates an initial carbon debt repaid only if the forest carbon sink eventually offsets
these losses.

The contrast between these edge cases highlights a key empirical question: how much of
observed bioenergy use is sourced from new harvests versus residues. Figure 3 shows that US
EIA data attribute only 10–20% of pellet feedstock to direct harvests, with the remainder
classified as residues. However, these classifications obscure the true market response. First,
wood chips are counted as waste wood but often represent minimally processed harvested
trees prepared for shipping efficiency. Second, sawdust—reported as a common feedstock
for pellet mills—was already nearly fully utilized before the emergence of the pellet industry
(Johnson et al., 2011). In other words, feedstock data do not account for potential feedstock
substitution across competing mills. Therefore, the true harvest increases will exceed reported
shares. To capture the full market-level response, including substitution effects, we need an
estimate of the amount harvesting that would have occurred had pellet mills never entered.
Developing that counterfactual is a core contribution of this paper: the structural model

23This simplification assumes residues decompose in the same year as bioenergy combustion and that
decomposition has an equal emission factors. In practice, decomposition is heterogeneous. For example,
residues are frequently burned on-site (without energy production) releasing carbon immediately while
significant shares are left to slowly decay over decades. Further, a share (5–20%) of the decomposing carbon
can be stabilized long-term in soils as organic matter. Thus, wood bioenergy front loads emissions, and
creates potentially larger emissions than decomposition. Accounting for a decomposition emission lag and
soil-carbon storage would only reinforce the conclusion presented here.
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presented below explicitly calculates the equilibrium level of market-wide harvests in the
absence of pellet-mill entry.

Figure 3: Pellet Mill Feedstock Shares, US South

Source: EIA Form 63C, Table 3. Shares computed by author. Waste wood
includes wood product manufacturing waste, bark, logging residues, wood chips,
post-consumer wood, unmerchantable wood, and other wood waste.

Over a given planning horizon T , cumulative atmospheric CO2 declines only if:

T∑
t=1

∆At ≤ 0 ⇒
T∑

t=1
∆Lt >

T∑
t=1

[(eb − ek)Et + ∆Rt].

Equivalently, any early losses in the land sink, i.e. ∆Lt < 0, must be fully offset by T ,
meaning the carbon debt must be repaid. As the impact of wood bioenergy policies on Lt is
an empirical question, a central contribution of the paper is providing a defensible estimate
of this parameter.24

4. Data & Descriptive Statistics

This paper constructs a novel, spatially explicit dataset linking annual land use, forest
biomass, and timber market conditions across the US South. The data combine 30-meter
remote-sensing products, including USFS Landscape Change Monitoring System (LCMS) for
land use, Global Forest Watch (GFW) for forest loss, and eMapr Forest Biomass Density for
aboveground biomass—with species distribution maps (Williams et al., 2020) and remotely

24This condition is unchanged if carbon capture and storage is introduced, unless capture rates for biomass
substantially exceed those for fossil fuel.
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sensed cost shifters including slope, insect and disease risk, and site accessibility.25 This
dataset allows each 30m by 30m plot of land to be followed through time as forests are
harvested, planted, or converted, enabling an analysis of land-use dynamics and market
interactions at a scale and sampling resolution not possible with traditional inventory data.

LCMS land-use classes are re-categorized into forest and non-forest after excluding pre-
existing urban areas, wetlands, and open water.26 Forest-loss events are cross-referenced with
GFW and LCMS attribution data to separate clearcuts from natural disturbances such as
fire or wind damage. The final sample covers roughly one billion 30-m plots across twelve
southern states.

Figure 4 shows the study area and land use categories in the year 2000 highlighting the
areas excluded from the analysis. Table 1 summarize land-use dynamics between 2000 and
2023. Forest cover declined by about one percentage point overall, reflecting substantial
simultaneous afforestation and deforestation. Roughly 4.3 percent of forests present in 2000
converted to non-forest uses, while only 9 percent of previously non-forest plots afforested,
yielding a net loss in forest area. This gradual erosion of forest cover aligns with the known
trend in the region of urban expansion reducing forest area over time (Wear and Greis, 2013).

Figure 4: Study Region

25Appendix A describes data sources, variable construction, and the temporal alignment of decision and
biomass data.

26Urban areas as of 2000 are excluded due to known LCMS misclassifications when urban canopy cover
increases.
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Table 1: Land Use Transitions

Transition Matrix
(2000–2023) Land Use Shares

Land Use Forest Non-Forest 2000 2023
Forest 95.7% 4.3% 77.5% 76.2%
Non-Forest 9.0% 91.0% 22.5% 23.8%

Figure 5 plots annual harvest probabilities by on-site biomass for softwood and hardwood
forests. Harvest likelihood rises with biomass and peaks around 17 tons for replanted plots,
while land conversion events are concentrated on poorly stocked sites with less than 5 tons of
biomass. Softwood stands are harvested and replanted roughly twice as often as hardwoods,
but hardwood forests are substantially more likely to be cut and permanently converted at
low biomass levels. Comparing the pre- and post-RED-I periods reveals two notable shifts.
First, the probability of harvest and replant increased for lower biomass levels, consistent
with stronger pulpwood demand from pellet mills. Second, the probability of harvests leading
to conversion to non-forest uses declines for both forest types, with the relative decline larger
for softwoods. While correlative, these shifts are consistent with stronger pulpwood demand
changing harvest and replanting incentives in the post-RED-I period.

Figure 5: Annual Harvest Rates

Note: Cut and replant refers to events where the forest cover is lost, and the landuse remains forested,
while cut and switch refers to events where the forest cover is lost, and the landuse switches to
nonforest.
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Product level prices come from Forest2Market (F2M) for pulpwood and sawtimber,
separately for softwoods and hardwoods, across 33 wood-purchasing markets from 2001–2023.27

Each plot is assigned the corresponding market price for its forest type. Importantly, the
reported prices correspond to the saw and pulp fractions of each plot’s biomass, rather than
total biomass. To align the biomass data with prices, I estimate the shares of biomass that
are saw, pulp, and residue as a function of the current biomass level for each wood type
using the USFS Forest Inventory Analysis (FIA) ground-truth dataset. This provides the
following set of estimated functions, denoted α̂j,w(b) where b is plot-level biomass of wood
type, w, and the alpha function estimates the share of biomass that is of type j: saw, pulp,
or residues. Using these estimated functions, I can then specify the relevant price index for a
unit of biomass, which for a given forest type, w, is:

pb = psα̂s(b) + ppα̂p(b),

where ps and pp are the prices from F2M for the saw and pulp portions of the biomass,
respectively.28

Figure 6 shows pulpwood prices for both wood types.29 These prices, however, are largely
determined by international demand for wood, with regional variation reflecting transport
costs to export markets. Critically, these are not the prices landowners actually receive. As
shipping unprocessed harvested logs is costly, each landowner sells to only a small set of
nearby mills, so the effective price they face depends on local competition, which adjusts the
market averages observed in the data. The absence of a structural break around RED-I in
Figure 6 therefore does not imply zero price pass-through from pellet-mill demand—it implies
that pass-through occurs through changing markdowns, rather than a shift in international
wood prices.

To properly measure pass-through, I incorporate data on mill locations, ownership, open-
ings, closures, type, and wood feedstock type from the Forisk Mill Capacity database,
supplemented with USFS and Southern Environmental Law Center records to extend cover-
age back to 2000.30 For each plot, I construct the potential bidder set, denoted Nw, which
represents the number of distinct mill owners within a given haul radius for wood type w.
Because landowners can only sell to mills that purchase the matching wood type, I calculate
Nw separately for softwood and hardwood plots, using 50 miles and 75 miles as the respective

27F2M markets are defined from transaction-level data between landowners and mills; see Appendix A for
market boundaries.

28Estimation details and a description of USFS FIA data are provided in Appendix A.
29Sawlog prices are presented in Appendix A.
30See Appendix A for data assembly details.
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Figure 6: Pulpwood Prices, US South Wood Markets

(a) Softwood (b) Hardwood

Note: All prices are displayed as indices to comply with provider restrictions. The mean market
price of softwood sawtimber in the year 2000 is used as the index baseline, and all other data
points are normalized relative to this value. Grey lines show individual market-level data.

radii.31

Figure 7 shows that, holding wood value constant, harvest probability rises monotonically
with the potential bidder set. This strong spatial correlation between market concentration
and harvesting behavior provides descriptive evidence that local oligopsony power may affect
landowner decisions. It also points to a key policy channel: even when international prices
show limited pass-through, shifts in local oligopsony structure can still transmit policy shocks
to landowners through changing markdowns. Capturing this mechanism requires explicitly
modeling how local buyer concentration affects landowner decisions, which I formalize in the
model below.

5. Model

The unit of analysis is a field of land indexed by i, which is managed by a profit-maximizing
landowner. Each field is located in a submarket, denoted by m. In each year, t, landowners
make a decision regarding land use for the next period. This decision is denoted by dit. If
the field is not forested, dit ∈ {plant, out}, that is, they can plant trees or continue to choose
the outside option.32 For landowners with forested fields, dit ∈ {wait, cut}, that is, they can
let the current forest grow and wait until the next period, or clear-cut all standing biomass.

31Transaction evidence shows typical haul distances of ≤ 55 miles for softwoods and ≤ 75 miles for
hardwoods (Gibeault and Coutu, 2015).

32The outside option can be thought of as either agricultural or development uses.
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Figure 7: Annual Harvest Rate by Land Value and Potential Bidder Set

I denote the state of a field’s land use as bit ∈ {0, 1, 2, . . . , B̄}. If bit = 0, the field is
not forested, while for bit > 0, the field is forested and bit denotes the tons of aboveground
biomass. I denote the exogenous state vector ωit ∈ Ω, with information on the prices, mills,
forest type, and cost shifters. All land is assigned a forest type, w, which denotes the current
forest wood type if forested, and potential forest wood type if not forested. Finally, there is a
state variable εit ∈ R4, which landowners observe but not the econometrician.

Growth in biomass on the field left to wait until next period follows a Markov chain with
a B̄ × B̄ transition probability matrix F b

w, which differs for each forest type, w. In other
words, for a given plot of land, beliefs over future biomass are given by Markov transition
probabilities:

F b
jk = Pr(bw

i,t+1 = k | bw
it = j)

which is the same for d ∈ {plant, wait}, and is degenerate for each d ∈ {out, cut} as bit+1 = 0
for these choices, regardless of the initial biomass level.

The number of potential mill buyers, Nimt, evolves according to a Markov transition matrix
F N

m,w that varies by sub market m and wood type w. Similarly, the vector of wood prices
by grade, g, P g

mt, follows a grade-wood-type specific transition matrix F P g

w . Together, these
processes characterize how both biological and market conditions evolve over time, shaping
the landowner’s dynamic optimization problem.
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The flow payoff for land use decision d, is given by:

Π(d, sit; θ) = π(d, bit, wit; θ) + ϵit(d)

where π(d, bit, wit; θ) is a function that depends only on observed state variables and on a
vector of parameters to be estimated, θ. Further, for each choice of dit, there is a different
unobserved state ϵit that represents a different unobserved state for each choice.

For fields not currently forested, where bit = 0, the observed flow payoff π(·; θ) is:

π(d, 0, ωit; θ) =

θ ri + θS1(bi,t−1 > 0) if d = out

θP 1(bi,t−1 = 0) + θR1(bi,t−1 > 0) if d = plant

The return index, ri captures the payoff from non-forest uses. It is constructed using pasture
suitability, and proximity to urban centers. I defer the discussion about the functional
specification to the next section on estimation. Note that a field can have 0 biomass for two
reasons: land use was previously non-forest, or land use was previously forest and was just
clearcut. If a field was previously non-forest bit−1 = 0, and remains non-forest, dit = out,
then bit−1 = bit = bit+1 = 0 and the payoff is equal to the return index for the outside
option. Similarly, when previously forested fields, bit−1 > 0, choose to transition to non-forest,
dit = out, then bit = bit+1 = 0. In this case, landowners pay a fixed switching cost θS and
earn the payoff from non-forest uses. When non-forest landowners plant trees on their field,
i.e. dit = plant, landowners pay a fixed tree planting cost. Planting costs θP or θR depend
on previous land use.

For forested fields, where bit > 0, the flow payoff π(·; θ) is:

π(d, bit, ωit; θ) =


bit(θXi) + θbbit if d = wait

bit(θrp
b
it(bit) − θZi − g(Nit, θ)) if d = cut

If landowners chose to keep their forest until the next period, dit = wait, then forests
grow and the decision repeats next period. When choosing to wait, landowners pay variable
maintenance costs θXi. Here Xi is a vector of observable forest maintenance cost shifters,
namely fire and insect/disease risk. Landowners may also have private costs or benefits
directly associated with forest density, which are captured by θb. This value captures the
net of private maintenance costs of biomass and private benefits from forest density (ex.
aesthetic, bequest, hunting) and any internalized portion of the public value of biomass via
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government policies. If landowners chose to clearcut, dit = cut, all biomass is removed and
bit+1 = 0. A clearcut earns a payoff equal to the market stumpage price index for field i’s
wood type, pb

it(bit) at the time of harvest.

Further, profits earned by a landowner are shifted with field-level harvest cost-shifters
contained in Zi, such as the slope of the land. Finally, profits are allowed to shift based
on the potential bidder set, Nit, where higher values of Nit are expected to lead to higher
profits. I approximate the markdown function with the following nonlinear form: g(Nit, θ) =∑N−1

k=1 θk 1{Nimt = k}, where N̄ is described in the previous section. It is important to note
that the choice to clearcut biomass, dit = cut, is a renewal decision, resetting bit+1 to 0, and
the landowner’s choice set to {out, plant}.

Assumption 1. The unobserved state variables, ϵit(d), are independently and identically
distributed over fields and time.

Assumption 2. The evolution of the exogenous state variables ω is not affected by landowner
decisions and ϵ, i.e.,

Fωit+1|dit,ωit,ϵit
= Fωit+1|ωit

.

Assumption 1 is standard in the dynamic discrete choice literature. Assumption 2 embeds
several important underlying features. First, it implies that landowners are price takers, a
reasonable assumption as many landowners own forest land. Second, landowner decisions
don’t alter expectations about future market structure. Third, it implies that choice-specific
unobservables, ϵ do not change expectations about the evolution of ω. Finally, assumption 2
makes it clear that random shocks do not systematically influence biomass accumulation, the
potential bidder set, or prices, and affect decisions like random noise.

I assume landowners discount future cash flows using a fixed discount rate β < 1. Landown-
ers choose dit every period conditional on (bit, ωit, ϵit) in order to maximize the sum of future
discounted flow payoffs:

max
dit

E

 ∞∑
j=0

βjΠ(di,t+j, bi,t+j, ωi,t+j, εi,t+j; θ)

∣∣∣∣∣∣ dit, bit, ωit, εit

 .

I now rewrite the dynamic optimization problem faced by landowners as a recursive Bellman
equation. When bit = 0, which are all non-forested fields, the landowner can choose the
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outside option or to plant trees. In this case, the value function is:

Vθ(0, ωit, εit) = max

π(out, 0, ωit; θ) + εit(out) + βE [Vθ(0, ωi,t+1, εi,t+1) | ωit] ,

π(plant, 0, ωit; θ) + εit(plant) + βE [Vθ(bi,t+1, ωi,t+1, εi,t+1) | bit, ωit]

.

When 1 ≤ bit ≤ (̄B), which are all forested fields, landowners can keep the forest or cut
all the biomass. In this case, the value function is:

Vθ(bit, ωit, εit) = max

π(wait, bit, ωit; θ) + εit(wait) + βE
[
Vθ(min(bi,t+1, B̄), ωi,t+1, εi,t+1)

∣∣∣ bit, ωit

]
,

π(cut, bit, ωit; θ) + εit(cut) + βE [Vθ(0, ωi,t+1, εi,t+1) |ωit]

.

Assumptions 1 and 2 imply that expected continuation values do not depend on the present
unobserved state ϵit. Further, Assumption 2, ensures that current choices do not alter the
distribution of ωit+1 conditional on ωit. Now let νθ(dit, bit, ϵit) be the deterministic component
of each choice’s value, that is,

νθ(dit, bit, ϵit) = π(dit, bit, ωit; θ) + βE
[
Vθ(min(bit+1(dit, bit), B̄), ωit+1, εit+1)

∣∣∣ bit, ωit

]
where (bit+1(dit, bit) denotes the expected biomass next period given decisions and current
biomass. The optimal choice, or policy function, is given by:

d∗(bit, ωit, εit) = arg max
d

[vθ(d, bit, ωit) + εit(d)] .

Since ϵit is unobserved to the econometrician, given observed state variables and parameters
θ, we cannot observed the optimal choice. Instead, a conditional choice probability (CCP)
can be constructed given the unobserved state distribution:

Pr(d | bit, ωit; θ) =
∫

1 {vθ(d, bit, ωit) + εit(d) ≥ vθ(d′, bit, ωit) + εit(d′) for all d′} dG(εit).

Assumption 3. ϵit(d) is independently and identically distributed across choice alternatives
with type 1 extreme value distribution.
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Assumption 3 implies the CCP has the usual logit form:

Pr(d | bit, ωit; θ) = vθ(d, bit, ωit)∑
d′ vθ(d′, bit, ωit)

.

This CCP is then used in the likelihood approach, described in the next section, that I
use to estimate the model’s vector of parameters θ.

6. Estimation

For estimation, I first sample from the full dataset along an evenly spaced 600-meter grid,
yielding an estimation dataset of just over 5 million plots of land. I estimate the parameters
in the model by Maximum Likelihood on data after RED-I to best reflect conditions in the
post-policy period. The goal of estimation is to obtain the vector θ from observed states
{bit, ωit} and decisions {dit}. Assumption 2 implies that the evolution of the exogenous state
does not depend on current endogenous states of landowner decisions. Therefore, I can write
the conditional log liklihood function as:

L(θ; (dit, ωit, bit)) =
∑

t

∑
i

log f(ωit | ωit−1; θ) +
∑

i

log (Pr(di | ωi, bi; θ))

where I omit the subscript t to denote the whole vector of decisions and states.

In the set of exogenous state variables, ωit, there are four variables that change over time
for a given landowner (pS

imt, pP
imt, bit, Nimt). For estimation purposes, I assume prices follow

an AR(1) process, with market fixed effects.33:
pS

mt

pP
mt

 =
kS

m

kP
m

 +
λS 0

0 λP

 pS
mt−1

pP
mt−1

 + ηmt, (10)

where

ηimt ∼ N

0,

σ2
S 0
0 σ2

P

 .

I then use the Tauchen (1986) discretization procedure with seven bins per market to convert
the estimated AR(1) process into a discrete Markov process that can enter the computation
of the CCP’s in the second term of the likelihood function. As first-step estimates of the

33The VAR(1) specification is not used as cross–price correlations are rejected in the data for both wood
types. Due to the presence of market fixed effects, the AR(1) processes are estimated via the Arellano–Bond
system GMM estimator (Blundell and Bond, 1998).
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transition functions are of no direct interest by themselves, I report these results in Appendix
B. Importantly, the AR(1) results show no violation of the required stationarity assumption.

Before estimating the remaining transition processes, I discretize the state space. The
upper bound for biomass, B̄, is set to 36, matching the typical maximum level of observed
biomass in the data. The upper bound for the potential bidder set, N̄ , is set to 6, as few plots
face more than six potential buyers. The remaining data discretization steps are described in
Appendix B. For biomass and the count of potential bidders I estimate the empirical Markov
transition process directly from the observed data. For biomass, I estimate the transition
process separately for each wood type. The implied biomass dynamics from these transition
functions are reported in Appendix B, which illustrate the expected growth trajectories
implied by the estimated Markov processes. For the potential bidder set an empirical Markov
transition process is estimated separately for each wood type, within each market. These
discrete transition processes are then held fixed as the second term in the likelihood function
is maximized with respect to the payoff parameters. To estimate payoff parameters, I use
Aguirregabiria and Mira (2002)’s Nested Pseudo Likelihood (NPL) method.

6.1. Estimation Results

Table 2 below shows the results from the NPL estimation of the payoff parameters.

Table 2: Payoff & Fixed Cost Parameter Estimates

Out Plant

θPasture SI 0.0221∗∗∗ (0.0016) θP -3.5639∗∗∗ (0.0356)
θAccessibility -0.0618∗∗∗ (0.0016) θR -4.0733∗∗∗ (0.0056)
θS -7.0154∗∗∗ (0.0334)

Wait Cut

θAGB -0.0084∗∗∗ (0.0001) θAGB×Price 0.0115∗∗∗ (0.0001)
θAGB×Insect -0.0006∗∗∗ (0.0000) θAGB×Slope -0.0032∗∗∗ (0.0000)

θResidue -0.5603∗∗∗ (0.0057)
θAGB×N=1 -0.0469∗∗∗ (0.0005)
θAGB×N=2 -0.0321∗∗∗ (0.0004)
θAGB×N=3 -0.0239∗∗∗ (0.0004)
θAGB×N=4 -0.0174∗∗∗ (0.0004)
θAGB×N=5 -0.0092∗∗∗ (0.0004)

Note: Standard errors in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05,
∗p < 0.1.

Both pasture suitability and accessibility to urban centres play a significant role in
determining the value of the outside option. First, the estimate for pasture implies that the

22



most suitable plots for pasture are 54% more valuable than the worst. Next, estimates for
accessibility show that plots closest to urban cores have an annualized value 24 times higher
than those in the hinterlands. This substantial variation in the value of the outside option
allows landowner incentives to vary widely across space.

Since conversion from forest to non-forest land uses require substantial clearing operations
(e.g., stump removal), the fixed costs of exiting forestry should exceed tree planting costs, a
pattern corroborated by the results. On the other hand, the results show that the costs of
converting marginal farmland to forest is lower than for replanting trees post-harvest. This
could be due to lower land clearing and preparation fees, but is likely also driven by the
presence of subsidies provided to forest land use conversion, such as the USDA Conservation
Reserve Program.

How landowners value above-ground biomass is not a priori obvious, as it reflects the net
of private benefits (e.g., amenity, recreational value, etc.) and internalized public benefits (e.g.
value of carbon) and variable maintenance costs. The results indicate that private costs are
larger than benefits, implying that landowners pay significant maintenance costs to upkeep
current forests. Forest maintenance costs are also found to shift significantly with insect risk.
The results imply that insect risk increases variable upkeep costs from $0 to $1.5 per ton of
on-site biomass.

The payoffs for landowners cutting their forest imply that higher sloped plots face higher
harvesting costs, as expected. Further, there are large estimated disposal costs for residues,
accounting for 15% of replanting costs. Residue disposal costs provides another subtle reason
why harvest rates for hardwoods are lower as they have a higher share of residues at all levels
of biomass. For the modal harvest volume, the residue removal costs on hardwood plots are
roughly 30% higher than for softwood plots. Finally, the impact of market power is significant
and is monotonically decreasing as the number of potential bidders increases. The estimates
imply that monopsonists lower the average sale price by 40%, while going from 6+ bidder to
5 lowers the average sale price by 8%. This is similar to the change in prices observed in the
timber auction literature from changing competition levels (Baldwin et al. (1997), Préget
and Waelbroeck (2012)).34

34Distance to roads, elevation, fire risk, and cotton yields had an imprecise effect (not statistically different
from zero) in earlier specifications and were removed for the sake of parsimony.
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7. Counterfactual Simulations

The purpose of the counterfactual simulations is to quantify how much of the observed forest
dynamics (i.e., harvesting, planting, carbon flux) can be attributed to the pellet mills that
entered due to RED-I. To do so, I use the estimated transition and payoff parameters to
simulate the evolution of the forest under alternative policy scenarios. The simulations begin
from the empirical distribution of 2009 observations, which defines the initial mass of plots
from the full dataset in each discrete state of the model’s state space.

First, I simulate the business-as-usual case which reflects the actual data conditions used
in estimation where pellet mills have entered and begun production. Then, I develop a
counterfactual where for each landowner, I recalculate Nimt without pellet mills, which I
denote as N ′

imt. I then re-estimate the transition function for the potential bidder set with
N ′

imt to capture the evolution of mills that would have occurred had pellet mills not entered.

The central threat to the validity of this counterfactual is that pellet mills may have
induced entry or exit of other mill types. In Appendix C, I estimate a staggered event-study
at the market-level and show that there is no statistically significant effect on the number
of non-pellet mills. When disaggregated by mill type, I find a marginally significant effect
suggesting that pellet mills induced entry of hardwood sawmills. This would imply that this
approach understates the change in competition, and the results presented below represent a
lower bound on the effect of pellet mills.35

By comparing simulated harvested volumes with and without pellet mills, I obtain an
estimate of the incremental harvest attributable to RED-I. This can then be compared to
pellet production by converting the US EIA’s reported industry output to expected harvest
demand.36 Figure 8 shows that during the years in which EIA tracks pellet production, the
model predicts harvest increases roughly equivalent to the harvest demand implied by pellet
output. This suggests that pellet production has been supplied largely from new harvests
rather than improved waste wood recovery. The estimated increase in this time period
harvests represents a 2% increase in harvest volume across the entire study region, which
while measured at a broader scale, is consistent with other studies estimating the impact of
pellet mills on harvesting rates. Specifically, Williams and Xi (2021) finds a 16% increase
harvested area within 60 miles of a set of selected pellet mills, while Parajuli et al. (2024)
find a persistent, though statistically insignificant, 10-15% increase in market-level pulpwood

35These results also confirm that, at the market level, pellet mills represent new potential bidders, as the
total number of unique bidders increases by a similar magnitude to the number of pellet mills entering.

36A common assumption is that one ton of pellets requires 2.2 tons of harvested biomass at the mill gate,
though this ratio can rise in high-moisture years or with shifts in species mix.
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harvests in markets where pellet mills enter.

Figure 8: Pellet Production vs. Simulated Change in Harvests

Note: EIA Form 63C provides US South wide pellet production. I convert this to required tons
of forest harvest by multiplying each output ton by the industry standard 2.2 to convert to
green-weight input requirement.

Since the increase in harvested biomass suggests a market response closer to the 100% new
harvest scenario discussed in Section 3, the carbon implications of the policy now depend on
whether the forest carbon sink increases. The left panel of Figure 9 shows simulated forest
biomass with and without pellet mills, while the right panel reports the net change in annual
CO2 sequestration rate due to pellet mills. Initially, relative to the no pellet counterfactual,
landowners delayed harvests in anticipation of future pellet entry and lower markdowns. This
results in temporarily higher forest biomass with pellet mills in the first three years. However,
by year 4, forest biomass falls below the no pellet counterfactual. By 2050, the counterfactual
world without pellet mills would have accumulated 1.8% more forest biomass.

In terms of carbon flux, this dynamic produces an initial increase in carbon sequestration
due to pellet mills for the first two years, followed by a long decline over the following decades.
In 2024, the model predicts that the forest removed ≈5 million tonnes less CO2 from the
atmosphere compared to the counterfactual, equivalent to about 1.4% of total UK emissions.
If valued on the EU ETS as energy-related carbon emissions, this lost sequestration would
correspond to roughly $1.8 billion at 2024 market prices. The social cost of the total loss
in forest carbon flux is $53 billion (2020 USD) through 2050.37 Longer run projections in

37The social cost is valued using the approach and methods from U.S. Environmental Protection Agency
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Appendix D show the simulated reduction in the carbon land sink persists well beyond 2050,
lasting for centuries. Framed alternatively, wood bioenergy policies permanently reduce
the carbon land sink, Lt, defined in Section 3. These forest carbon losses make the policy
counterproductive at both the point of emissions and in the forest. This implies that wood
bioenergy from the US South has increased atmospheric CO2 relative to coal.

Figure 9: Forest Biomass & Carbon Flux

This result may appear counterintuitive as higher effective prices paid to landowners lead
to a lower long-run supply of forest biomass. However, this outcome is driven by imperfect
post-harvest replanting which leads to increased forest losses over time. In the absence of
pellet production, the US Forest Service (USFS) projections show that total forest area in
the US South is expected to decline through 2050 due to suburban encroachment from urban
growth. The model’s results show with pellet mills landowners increase the rate of forest
conversion relative to the no pellet counterfactual.

The left panel of Figure 10 shows the additional km2 of forest loss with pellets compared to
the counterfactual. By 2050, the model predicts more than 1500km2 of additional cumulative
forest loss, larger than the entire urban area of Orlando in 2010. The right panel the model’s
simulated annual rate of forest loss with the USFS’s projected losses from urbanization under
two alternative urban growth scenarios. Two patterns emerge. First, the rate of forest loss
due to pellet mills continues to rise through 2050.38 Second, by 2050, the presence of pellet
mills increases the projected rate of forest loss by 16% − 38%, depending on the urban growth
scenario. This loss in forest land represents the extensive margin through which long-run
biomass declines. On the intensive margin, higher harvest rates from a shrinking forest base
lowers the average biomass per field compounding the total loss of forest carbon over time.

Even though forest area and biomass both decline due to to pellet mill entry, the model
predicts changes in landowner behavior consistent with theoretical expectations. Figure
(2023b).

38In Appendix D’s long-run simulation, losses do not fully stabilize and over 12,000km2 is projected to be
lost by 2250.
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Figure 10: Forest Loss from Wood Bioenergy

11 shows that afforestation increases in response due to reduced markdowns, as expected.
However, as post-harvest replanting remains incomplete there more land use conversion
due to increased harvesting.39 As a result, the gains in forest area from higher planting
and replanting are outweighed by the forest area lost from additional harvests that are
not replanted. The model shows that the increase in deforestation, driven by imperfect
replanting, is larger than the additional afforestation and stays larger over the planning
horizon. Consequently, despite more frequent planting and replanting, forest area continues
to shrink, leading to lower biomass accumulation over time.

Figure 11: Afforestation vs. Deforestation

While these aggregate results demonstrate substantial carbon losses, they mask critical
spatial heterogeneity that can inform policy design. In Table 3, I decompose the cumulative

39On average, only ≈ 82% of harvested plots are replanted
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change in forest carbon through 2050 by wood type, accessibility, and pasture suitability to
identify where bioenergy-driven land-use change most affects carbon stocks. The results reveal
important heterogeneity in the results across forest types and site characteristics. First, losses
are dominated by hardwood forests, which together account for 84% of the lost forest carbon,
reflecting both higher baseline conversion probabilities and slower regrowth rates. Further,
across forest types, forest carbon losses are concentrated in high- and mid-accessibility zones,
where forests face greater development and conversion pressure. In contrast, softwood forests
in low-accessibility, low-suitability areas exhibit forest carbon gains, reflecting both lower
land conversion risk and faster regrowth rates. This spatial heterogeneity demonstrates that
the overall carbon impact of wood-bioenergy policy depends on the types of forests harvested
and their surrounding land-use incentives.

Table 3: Decomposition of Cumulative Change in Forest Carbon

Wood Type Accessibility Pasture
Suitability

∆ CO2
(MMT)

Hardwood High High -27.6
Mid -48.3
Low -16.5

Mid High -24.1
Mid -46.5
Low -14.5

Low High -12.0
Mid -8.7
Low 19.3

Hardwood Subtotal -178.9

Softwood High High -30.0
Mid -22.7
Low -13.1

Mid High -16.9
Mid -15.0
Low 1.9

Low High 15.0
Mid 16.5
Low 28.1

Softwood Subtotal -36.2

Total -215.1
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8. Conclusion

This paper develops a dynamic structural model of forest harvesting and land use to
quantify the long-run effects of wood bioenergy subsidies on forest dynamics and carbon
sequestration. The model links landowner decisions to local buyer concentration, capturing
how pellet mill entry from RED-I changed harvesting intensity, forest area, and forest carbon
flux over time. The results indicate that the marginal unit of wood supplied by US South
wood markets to meet European bioenergy demand has been sourced primarily from new
harvests rather than waste wood, creating a carbon debt that can only be repaid through
subsequent forest regrowth. Although landowners received higher effective prices from pellet
mill entry, due to lower markdowns, the increase in tree planting is insufficient to offset the
forest loss arising from imperfect post-harvest replanting. As a result, the model predicts
a persistent decline in forest biomass and carbon sequestration, implying that bioenergy
policies reduced the long-run carbon sink potential of US South forests.

These findings challenge the implicit premise underlying wood bioenergy subsidies: that
future sequestration will offset combustion emissions and the lost sequestration from leaving
trees in the ground. This underscores the importance of designing policy frameworks that
account for land-use switching, imperfect replanting, and substitution effects across mills.
Analyses that treat markets as static or analyze short-run equilibria miss the feedback
between prices, harvesting, and replanting that determine long-run forest carbon outcomes.
By explicitly modeling imperfect replanting and endogenous land-use transitions, this paper
shows that policies which appear carbon-neutral can, over time, generate cumulative carbon
losses over time. Accounting for these dynamic adjustments is essential for accurately assessing
the true climate impacts of renewable energy incentives.

A key implication is that current international carbon-accounting frameworks overstate
the climate benefits of wood bioenergy. Under current conventions, emissions from bioenergy
combustion are counted as zero in the energy sector and are assumed to balance over time
in the forest sector. Yet these accounts lack the spatial and temporal resolution to identify
whether forest regrowth actually repays any incurred carbon debt. As a result, policies can
appear to offset in official inventories even when they reduce the long-run forest carbon sink.
Incorporating market-based estimates of the impact on forest carbon flux, such as those
developed in this paper, would substantially improve the accuracy of global carbon accounting
for wood bioenergy. This problem would not be solved even if carbon-capture technology were
added at the smokestack; the continued loss of forest carbon from new harvests and imperfect
replanting would still yield net emissions. In short, the forest carbon losses dominate, meaning
that current policies, even when coupled with carbon capture, cannot deliver genuine carbon
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benefits without changes in sourcing or replanting requirements.

The analysis also provides insights into how to improve the current policy regime to achieve
real climate benefits. By decomposing the results across the spatial heterogeneity in the
data, I show that carbon losses are concentrated in hardwood forests and in areas with high
development pressure and agricultural value. In softwood forests with low development and
agricultural value, the pattern reverses, with climate benefits emerging by 2050. This spatial
heterogeneity suggests that the overall carbon effect of bioenergy policy depends on which
forests the wood is sourced from. This suggests that existing policy frameworks such as the
EU Deforestation Regulation (EUDR) and the UK’s forthcoming Forest Risk Commodity
Regulation should integrate spatial sourcing criteria. By incorporating spatial targeting,
these deforestation laws could ensure that renewable energy policies deliver genuine climate
benefits. Future work could develop this further to determine the optimal targeting of mill
locations under budgetary constraints to maximize environmental outcomes as in Assunção
et al. (2023).

The framework developed here suggests a number of additional future research directions.
Beyond bioenergy, it provides a general tool for analyzing forest sector responses to policy
shocks that alter the spatial and temporal distribution of wood demand. The same approach
could be applied to assess the forest and carbon consequences of policies that increase
harvesting pressure, such as bans or taxes on plastic packaging that raise paper demand,
incentives for mass timber construction, or the expansion of carbon credit markets. This
would provide empirical tests of policies that increase harvesting under the carbon accounting
framework in Searchinger et al. (2018), who emphasize that the climate consequences of
wood harvests depend on the net carbon balance between product carbon pools, smokestack
emissions, displaced fossil fuels, and foregone forest-carbon sequestration.

Additional extensions could further enrich the modeling framework itself. Incorporating a
dynamic model of mill entry would for a more detailed analysis of how proposed sourcing
restrictions affect entry location and market structure. Embedding such a model within the
dynamic landowner framework remains both an empirical and theoretical challenge due to the
presence of two-way expectations between mills and landowners. Several assumptions in the
current model could also be relaxed with additional data. For instance, parcel-level property
ownership data would enable a more natural representation of aggregated harvest blocks and
capture economies of scale in harvesting decisions. Future work could also incorporate forest
mortality due to natural disturbances, allowing the model to capture how standing dead
and decomposing biomass affect policy outcomes. Finally, extending the model to include
thinning harvests, in which only a portion of forest biomass is removed, would align the model
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more closely with forestry practices in the US South. However, this would require maps
of partial forest loss or other measures of forest degradation, an emerging field in remote
sensing.
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A. Data

In this section, I provide details on how the core datasets used in the paper are merged and
aligned with one another. First, I describe how I temporally align the three separate panel
datasets derived from remote sensing which measure the core decision and stock variables:
land use, biomass, and forest loss. Subsequently, I detail the construction of the mill dataset,
which combines mill capacity data from Forisk and the US Forest Service (USFS) to create a
time series of wood-receiving mills spanning from 2000 through 2023. I then describe how
this mill dataset is used to calculate key market structure measures around individual plots.
I continue by describing how the stumpage price dataset is mapped to individual plots. I
then introduce the USFS FIA database and the estimation method used to convert biomass
into sawtimber and pulpwood to align with the price data. Finally, I also discuss the creation
of additional regressors used in the paper.

All datasets, except for mills, prices, and the FIA database are spatial raster files. These
raster datasets are spatially merged on a common grid. The table below summarizes the
data source for each variable used in the paper, along with its initial measurement scale.
The final dataset consists of approximately 1.22 billion observed plots of land from 2001 to
2023. As described below, we restrict the data to remove pre-existing urban areas, water,
and protected land to obtain 1.03 billion plots. Finally, to make the dataset computationally
tractable for descriptive and econometric analysis, I sample it along an evenly spaced 600m
grid, yielding a balanced panel of roughly 5.15 million plots over the study period.

Table A.1: Data Sources and Resolution

Variable Name Data Source Resolution
Land Use USDA Forest Service (2025) 30 m
LCMS Forest Change USDA Forest Service (2025) 30 m
GFW Forest Loss Hansen et al. (2013) 30 m
Forest Loss due to Fire Potapov et al. (2022) 30 m
Aboveground Biomass Kennedy et al. (2018) 30 m
Protected Areas U.S. Geological Survey (2024) 30 m
Forest Type in 2000 Williams et al. (2020) 30 m
Pasture Suitability FAO and IIASA (2007) 10 km
Slope U.S. Geological Survey (2019) 30 m
Fire Risk Scott et al. (2024) 30 m
Insect Risk Krist et al. (2014), Projected Loss Rate 250 m
Site Remoteness Weiss et al. (2018) 1 km
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A.1. Decision and Biomass Data Alignment

Due to differences in the underlying methods to create each remote sensing dataset, I first
must ensure temporal consistency across land use, biomass, and forest loss measures. I first
restrict the sample by removing protected areas, water, and pre-existing urban areas. I first
address spurious transitions from urban to forest, commonly observed in remote sensing data
due to urban tree growth but rarely supported by ground truth, by enforcing persistence of
developed land use classes. I next simplify land use categories into forest and non-forest,
where non-forest includes agriculture, pasture, urban, and bare land. I then remove transient
transitions, forest to non-forest and back, that last two periods or fewer from the time series.
These are mainly related to temporary transitions to bare land after harvesting or natural
disturbances.

Next, I align the land use, forest loss, and biomass datasets to ensure temporal consistency
across them, as each is derived from separate machine learning algorithms applied to Landsat
imagery. We first align the land use measure and Global Forest Loss (GFW) loss dates.
Due to differences in the time of year of the satellite images used in the machine learning
algorithms underlying these datasets, land use transitions may occur early (i.e. in the year
of harvest) when there is a forest loss event. For these cases, I set the land use transition
to occur exactly one year following GFW-detected loss events. This ensures that losses
occur on forested lands and transitions occur post-loss. After this alignment, only 0.25% of
GFW-detected losses occur non-forested land. I drop these GFW-losses from the dataset.
However, there remains a set of forest-to-nonforest land use transitions without corresponding
GFW-detected loss. I combine these forest loss events with the GFW forest loss variable to
create my final forest loss measure. Doing so adds an extra 12% more loss events compared
to the original GFW loss measure alone.

Following the harmonization of land use and forest loss, I next align aboveground biomass
data to be consistent with these two datasets. The core reason for temporal discrepancies here
is two-fold. First, biomass measurements are based on dense Landsat image stacks throughout
the entire calendar year. Therefore, a loss occurring mid-year will be reflected in the data
as the average of biomass pre- and post-loss. Second, the machine learning method used
to generate the biomass measure in Kennedy et al., 2018, uses LandTrendr based statistics
which in practice smooth biomass estimates across years. In the dataset, this causes biomass
to fall prematurely preceding loss events. To correct both of these issues, I update biomass
for observations preceding loss events. Specifically, for a measured forest loss occurring at
time t, I calculate pre-loss biomass, biomasst, from year t − 2. This is implemented in the
following way. First, I update biomasst−1 = biomasst−2∗(1+g(biomasst−2), for all loss events
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where biomasst−1 < biomasst−2 ∗ (1 + g(biomasst−2). Then I update biomasst as biomasst =
biomasst−1 ∗ (1 + g(biomasst−1) if biomasst < biomasst−1 ∗ (1 + g(biomasst−1). Here the
function g() represents the average biomass growth rate derived from our transition function,
applied at the biomass levels biomasst−2 and biomasst−1, respectively. In other words, we
take the last unbiased measure of biomass as the last true measure of biomass before loss
events. We allow this unbiased measure to grow according to our estimated transition function
to create the measure of biomass at the time of harvest. As we measure biomass removals from
forest loss events as biomasst − biomasst+1 and the biomass measure is essentially smoothed
over local windows due to the use of Landtrendr, we update biomasst+1 = 0 following loss
events. Further, by setting biomasst+1 = 0 our measure is now consistent with estimates of
biomass removals from loss events in the US Forest Inventory Analysis (FIA) ground-truth
database. Finally, to align the biomass data with the land use data, I set biomass to 0
for non-forest observations. This ensures only forest biomass is measured. Throughout the
biomass cleaning protocol, I use biomass data from 1999 and 2000 to correctly adjust the
beginning of the time series for loss events in 2001.

Now that the core datasets measuring loss, biomass, and land use are aligned temporally,
I delineate forest loss into clearcut events and natural loss events using attribution data.
Specifically, I identify natural loss events using the GFW losses due to fire dataset, which
includes high and very high probability codes 3 and 4, and the LCMS attribution dataset,
which contains codes for fire, wind, hurricanes, insects, and other natural causes. If a measured
loss event is found to coincide with either of these measures, I define that as a natural loss.
Then I define clear cuts as forest loss events that are not natural loss. In the US South, risk
from fire, pests, and wind are considered to be relatively low and this is confirmed in our data
where approximately 98% of measured forest loss events are categorized as clearcut events.

In summary, this data alignment procedure produces our key measures for: land use, clear
cuts, natural losses, and above-ground biomass. Finally, I define forest planting events as
occurring in the year where land use transitions from non-forest to forest. Replanting events
are defined to happen the year following a forest loss for all plots which remain forested
post-loss.

A.2. Mill Dataset Creation

The mill dataset is created from five data sources. First, the core dataset of mill locations,
entry and exit dates, ownership, and feedstock wood type comes from the Forisk Mill Capacity
Database and covers 2009 to 2023. I then extend this series backwards to the year 2000 using
4 data sources, each covering a different mill type.
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For sawmills, I utilize a series of reports produced by the USFS between 1995 and 2009
(Spelter and McKeever, 1999; Spelter and Alderman, 2005; Spelter et al., 2009). These
reports provide data on mill locations, entry and exit dates, and ownership of all sawmills
in the region. I use the overlap in 2009 data to ensure consistency. The USFS data do
not include precise geographic coordinates for each mill but instead report the city, state,
and firm name. These attributes are sufficient to reliably match mills across datasets. A
small subset of sawmills, representing fewer than two percent of the sample, could not be
matched automatically. For these mills, entry and exit dates as well as ownership histories
were manually verified using company records and historical imagery from Google Earth.
All mill matches and verification details were rigorously validated to ensure accuracy and
consistency across datasets.

For pulp mills, I use annual USFS Southern Pulpwood Production from 2000 to 2009,
which provide information on mill locations, annual capacities, and ownership. Mill entry
and exit are inferred from additions to and removals from these annual lists. Every pulp mill
in Forisk is matched directly between datasets (Johnson and Steppleton, 2002, 2011). For
OSB mills, a type of wood-receiving mill, I confirm entry dates using data from a report
from Forest2Market (2015) which provides data on mill presence for this class of mill from
1995-2010. Finally, for pellet mills, I use data from the Southern Environmental Law Center,
to pin down entry dates for the set of pellet mills active in the Forisk prior to 2009 (Sackett,
2023).

Now I have a complete time series of capacities for each mill type from 2000 to 2023.
Next I harmonize capacity measures across mill types to be in the same units: tons of wood
demanded at capacity. This measure is provided in the Forisk dataset and is stable within a
mill type for a given source wood type (softwood or hardwood). The table below gives the
conversion factors used in the paper to convert each mill types original capacity measures
into the same units.

After combining these sources, I obtain a complete panel dataset of mill locations, owner-
ship, and feedstock wood type for all wood-processing facilities from 2000 to 2023. Using this
dataset, I construct local market structure measures for each sampled plot. Specifically, I
compute Nw,d, where w denotes the dominant wood type processed by the mill (softwood
or hardwood) and d represents the distance radius. For each plot producing wood of type
w, Nw,d measures the number of unique mill owners operating any mill that processes wood
of type w within distance d of that plot. This measure effectively captures the number
of potential bidding mills a landowner could expect at auction. Mills that process both
hardwood and softwood are included for plots producing either wood type.
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A.3. Markets & Prices

Prices are provided by Forest2Market for each 33 wood purchasing markets in the study region.
Forest2Market defines a wood purchasing market (a micro-market in their dataset) using
transaction level data between mills and landowners to define ’typical’ market boundaries.
Each county is then assigned to a given market. In practice, there are about 2-3 markets per
state, although markets do not necessarily conform to state boundaries. For each market,
there are four price series. One for each wood-type and grade (i.e. sawtimber or pulpwood
for each of hardwood or softwood). Figure A.2 shows the market boundaries for the set of
markets in the study area. For each plot, we then assign the annual product prices, based on
the geographic market the plot is located within and the wood type the plot is assigned from
the Williams et al. (2020) dataset. Saw prices are shown below, where all prices are indexed
such that the mean price across all softwood markets in 2000 is 100.40

Figure A.1: F2M Market Definitions

A.4. Biomass to Wood Products (α funcion estimation)

In the paper, I take a given stock of aboveground biomass observed at time t and apply
two functions to determine the share of biomass that is sawtimber or pulpwood on each site.
These share functions, αsaw(bit) and αpulp(bit), are estimated from the ground-truth plot-level

40This is a requirement of the data vendor.
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Figure A.2: Sawlog Prices, US South Wood Markets

(a) Softwood (b) Hardwood

data of the USFS Forest Inventory and Analysis (FIA) program for each state in the study
area. The FIA dataset is particularly advantageous because the biomass measure is the
same ground-truth data used in Kennedy et al. (2018) to calibrate satellite-based biomass
estimates.

The FIA plots are 1/6-acre in size, revisited roughly every five years, and spaced approxi-
mately 5.5 km apart. At each visit, field crews measure for each tree the total above-ground
biomass and the portions allocated to sawtimber, pulpwood, and residual biomass (i.e., bark,
branches, leaves, and stump). Tree species are also recorded and classified. Using these data,
I classify plots as hardwood or softwood by the most dominate single forest type. Given the
small size of a plot, most are homogeneous. For each plot, I aggregate tree-level biomass
components to the plot level, then estimate αsaw and αpulp functions separately for hardwood
and softwood plots.

For estimation, I employ a modified Chapman–Richards growth model following Barnett
et al. (2023). The functional form is:

αi = θ1
(
1 − e−θ2bi

)θ3 + εi,

where bi is total above-ground biomass for plot i, θ1 represents the asymptotic (maximum)
share of sawtimber (or pulpwood) as biomass increases, θ2 governs the rate of increase, and
θ3 controls the inflection and curvature of the relationship. The parameters are estimated
using nonlinear least squares separately for sawtimber and pulpwood shares within hardwood
and softwood plots.
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Although most forestry growth models relate biomass or volume to stand age, model-
ing composition shares as a function of biomass density is equally appropriate, since the
accumulation of sawtimber and pulpwood follows similar sigmoidal dynamics. The modified
Chapman–Richards specification provides a biologically realistic, flexible functional form for
these relationships (Barnett et al., 2023). Table A.2 reports the estimated model results and
shows that there is strong goodness-of-fit across all four models, and Figure A.2 shows the
predicted share curves along with the implied share of residues.

Table A.2: Chapman–Richards Growth Estimates

Softwood Hardwood

Sawtimber Pulpwood Sawtimber Pulpwood

θ1 0.591∗∗∗ 0.770∗∗∗ 0.482∗∗∗ 0.692∗∗∗

(0.0044) (0.0009) (0.0020) (0.0006)
θ2 0.449∗∗∗ 0.568∗∗∗ 0.499∗∗∗ 0.549∗∗∗

(0.0127) (0.0098) (0.0093) (0.0102)
θ3 0.014∗∗∗ 0.051∗∗∗ 0.013∗∗∗ 0.077∗∗∗

(0.0003) (0.0005) (0.0002) (0.0008)

R2 0.827 0.972 0.871 0.967

Notes: Standard errors in parentheses. *, **, *** denote
significance at the 10%, 5%, and 1% levels respectively.

Figure A.3: Estimated shares by biomass level
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B. Estimation

Table A.2 reports the estimated autoregressive parameters for sawtimber and pulpwood
prices by wood type. All series are estimated using the Blundell–Bond two–step system
GMM estimator (Blundell and Bond, 1998) with market fixed effects which account for price
differences across markets. The instrument set uses lagged levels and first differences of prices
as instruments. The results confirm strong persistence in log prices, with autoregressive
coefficients ranging from 0.89 to 0.92 for softwood and 0.41 to 0.56 for hardwood. The
Hansen test statistics indicate no evidence of instrument overidentification at conventional
significance levels. These results validate the AR(1) assumption used in the construction of
the discrete price transition matrices described in Section 5.

Table B.1: AR(1) Estimates for Prices by Wood Type and Grade

Softwood Hardwood

Sawtimber Pulpwood Sawtimber Pulpwood

Lagged Price 0.919∗∗∗ 0.891∗∗∗ 0.559∗∗∗ 0.411∗∗∗

(0.0129) (0.0452) (0.0566) (0.0720)
Constant 0.203∗∗∗ 0.195∗∗∗ 1.430∗∗∗ 1.125∗∗∗

(0.0417) (0.0965) (0.186) (0.149)

Hansen Test Statistic 39.00 37.74 38.90 27.40
(p-value) 0.603 0.658 0.608 0.197

Notes: Standard errors in parentheses. *, **, *** denote significance at the 10%,
5%, and 1% levels respectively.

Figure 15 presents the simulated biomass growth trajectories implied by the estimated
Markov transition functions, beginning from an initial biomass level of zero and projected
forward for 150 years. Each curve represents the expected evolution of aboveground biomass
under the estimated transition process for softwood and hardwood stands.

Softwoods exhibit much faster early growth, with expected biomass accumulation leveling
off after roughly 100–120 years. Hardwoods grow more slowly but ultimately achieve a higher
asymptotic biomass level. This pattern aligns with biological and silvicultural expectations:
softwood species mature rapidly and are typically harvested sooner, while hardwoods exhibit
slower growth and higher eventual volume.

As the modal biomass level at harvest is 17 tons for both forest types, these growth
functions align well with standard harvesting timelines. Standard practice in the region is
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to harvest softwoods when trees reach 25-30 years, and hardwoods when they reach 50-60
years old. These growth curves show that the modal level of harvest is achieved at 25 years
for softwoods, and 49 years for hardwoods. Thus these growth curves are consistent with
industry-standard harvest cycles observed in the US South.

Figure B.1: Simulated Biomass Growth

C. Mill Dynamics After Pellet Entry

The counterfactuals in the paper remove pellet mills from the potential bidder set. Absent an
explicit entry–exit model, this may misspecify their impact on market structure. Pellet mills
both compete with other fiber-consuming mills (e.g., pulp, plywood) and purchase residues
from sawmills, potentially inducing exit of the former and entry of the latter. To study these
dynamics, I construct mill counts for each F2M market by summing the number of operating
mills in each year, by mill type (sawmill, pulp, etc.) and wood type (hardwood or softwood).
To ensure pellet mills are not simply new facilities opened by incumbents, I also examine
whether the number of unique firms changes.

I frame the analysis in terms of the following event-study specification:

N j
mt = αm + γt +

K∑
k=−K

βk 1{t − Tm = k} + εmt, (2)

where N j
mt is the number of mills of type j in market m and year t, while αm and γt are

two-way fixed effects.

Although equation (2) provides the canonical regression equation, I estimate the dynamic
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treatment effects βk using the staggered-adoption difference-in-differences estimator of Call-
away and Sant’Anna (2021). This approach recovers group-time average treatment effects
relative to the not-yet-treated sample, which I then aggregate into event-study coefficients.
In practice, this avoids the bias that arises in traditional two-way fixed effects regressions
under staggered treatment timing.

Markets are treated in the year a pellet mill begins operations, Tm, with adoption occurring
at different times across markets. By 2023, 16 markets experience a softwood pellet entry
and 13 experience a hardwood pellet entry.

Table A3 summarizes the results. As expected we see that the number of pellet mills
increases with treatment, with point estimates exceeding one indicating that on average
more than one pellet mill enters. Coefficients for sawmills and other fiber consuming mills
are in the expected direction, but statistically insignificant. The exception is hardwood
sawmills, where results suggest that pellet mills induced sawmill entry, though this result is
only marginally statistically significant. In light of this, my counterfactuals can be thought of
as a lower bound on the change in the potential bidder set. In other words, if sawmill entry
were properly accounted for, the change in the potential bidder set would be larger. Finally,
the increase in number of unique firms in treated markets illustrates that pellet mills were
not established by incumbent firms.

Table C.1: Treatment Effects on Mill Counts and Competition by Wood Type

Pellet Mills Sawmills Other Pulp Mills Bidders

Softwoods

ATT 1.355∗∗∗ 0.052 -0.112 1.342∗∗∗

(0.183) (0.226) (0.128) (0.222)

Hardwoods

ATT 1.370∗∗∗ 0.224∗ -0.135 1.105∗∗∗

(0.401) (0.135) (0.149) (0.171)

Notes: Standard errors in parentheses. *, **, *** denote significance
at the 10%, 5%, and 1% levels respectively.

D. Long-Run Simulations

In this appendix, I extend the counterfactual simulations forward by 250 years to show
the long-run dynamics implied by the model. These long-run results show that forest
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biomass approaches a steady state around the year 2250. Over this horizon, the forest stock
with pellet mills remains permanently lower than in the no-pellet counterfactual. Carbon
sequestration remains reduced over the entire 250-year span, indicating a persistent weakening
of the carbon land sink. Forest loss continues throughout the simulation, reaching roughly
12,000 km2 of additional loss after 250 years, larger than the urban area of every US city.
The underlying mechanism remains the same as in the main analysis: increased harvests
combined with incomplete replanting accelerate the conversion of forest land. However, these
long-run projections show that while deforestation rates level off by around 2250, afforestation
continues to gradually rise, suggesting a slow approach toward a new equilibrium in which
total forest area remains permanently lower.

It is important to emphasize that extending the model so far into the future assumes the
underlying land-use processes remain stable, including the gradual net deforestation trend
observed in the data. Over such a long horizon, many factors could alter these dynamics:
technological change in forest management, shifts in land policy, evolving urban expansion
pressures, or new carbon mitigation instruments. The current simulation should therefore be
interpreted as a stylized projection conditional on present mechanisms persisting. Within
that framework, the results highlight that the policy primarily amplifies an ongoing process
of net deforestation, rather than introducing a new one, and that this acceleration has lasting
implications for the long-run forest area, biomass, and carbon storage.

Figure D.1: Long Run Biomass & Carbon

48



Figure D.2: Long Run Forest Loss

(a) Net Forest Loss (b) Afforestation vs. Deforestation
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